f07 — Linear Equations (LAPACK) f07hhc

NAG C Library Function Document
nag_dpbrfs (f07hhc)

1 Purpose

nag_dpbrfs (f07hhc) returns error bounds for the solution of a real symmetric positive-definite band system
of linear equations with multiple right-hand sides, AX = B. It improves the solution by iterative
refinement, in order to reduce the backward error as much as possible.

2 Specification

void nag_dpbrfs (Nag_OrderType order, Nag_UploType uplo, Integer n, Integer kd,
Integer nrhs, const double ab[], Integer pdab, const double afb[],
Integer pdafb, const double b[], Integer pdb, double x[], Integer pdx,
double ferr[], double berr[], NagError *fail)

3 Description

nag_dpbrfs (f07hhc) returns the backward errors and estimated bounds on the forward errors for the
solution of a real symmetric positive-definite band system of linear equations with multiple right-hand
sides AX = B. The function handles each right-hand side vector (stored as a column of the matrix B)
independently, so we describe the function of nag_dpbrfs (f07hhc) in terms of a single right-hand side b
and solution z.

Given a computed solution z, the function computes the component-wise backward error (3. This is the
size of the smallest relative perturbation in each element of A and b such that = is the exact solution of a
perturbed system

(A+6A)x =0+ b
|6a;;| < Blai;| and [6b;| < B|b;].

Then the function estimates a bound for the component-wise forward error in the computed solution,
defined by:

max |z; — &;|/ max |z;|
1 1

where Z is the true solution.

For details of the method, the f07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

[NP3645/7] f07hhe.1

f07hhc NAG C Library Manual

2: uplo — Nag_UploType Input

On entry: indicates whether the upper or lower triangular part of A is stored and how A has been
factorized, as follows:

if uplo = Nag_Upper, the upper triangular part of A is stored and A is factorized as U U,
where U is upper triangular;

if uplo = Nag_Lower, the lower triangular part of A is stored and A is factorized as LL”,
where L is lower triangular.

Constraint: uplo = Nag_Upper or Nag_Lower.

3: n — Integer Input
On entry: n, the order of the matrix A.

Constraint: n > 0.

4: kd — Integer Input
On entry: k, the number of super-diagonals or sub-diagonals of the matrix A.

Constraint: kd > 0.

5: nrhs — Integer Input
On entry: r, the number of right-hand sides.

Constraint: nrhs > 0.

6: ab[dim] — const double Input
Note: the dimension, dim, of the array ab must be at least max(1, pdab X n).

If order = Nag_ColMajor, the (7, j)th element of the matrix is stored in ab[(j — 1) x pdab + ¢ — 1] and
if order = Nag_RowMajor, the (i,j)th element of the matrix is stored in ab[(i — 1) x pdab + j — 1].

On entry: the n by n original symmetric band matrix A as supplied to nag_dpbtrf (f07hdc).

7: pdab — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix A in the array ab.

Constraint. pdab > kd + 1.

8: afb[dim] — const double Input
Note: the dimension, dim, of the array afb must be at least max(1, pdafb x n).

On entry: the Cholesky factor of A, as returned by nag_dpbtrf (f07hdc).

9: pdafb — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix in the array afb.

Constraint. pdafb > kd + 1.

10: b[dim] — const double Input

Note: the dimension, dim, of the array b must be at least max(l,pdb x nrhs) when
order = Nag_ColMajor and at least max(1,pdb x n) when order = Nag_ RowMajor.

If order = Nag_ColMajor, the (i, j)th element of the matrix B is stored in b[(j — 1) x pdb + ¢ — 1] and
if order = Nag_RowMajor, the (4, j)th element of the matrix B is stored in b[(i — 1) x pdb + 5 — 1].

On entry: the n by r right-hand side matrix B.

f07hhe.2 [NP3645/7]

f07 — Linear Equations (LAPACK) f07hhc

11:

pdb — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array b.

Constraints:

if order = Nag_ColMajor, pdb > max(1,n);
if order = Nag RowMajor, pdb > max(1, nrhs).

12: x[dim] — double Input/Output
Note: the dimension, dim, of the array x must be at least max(l,pdx x nrhs) when
order = Nag_ColMajor and at least max(1,pdx x n) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (i, j)th element of the matrix X is stored in x[(j — 1) x pdx + ¢ — 1] and
if order = Nag_RowMajor, the (4, j)th element of the matrix X is stored in x[(¢ — 1) x pdx + 7 — 1].
On entry: the n by r solution matrix X, as returned by nag_dpbtrs (f07hec).

On exit: the improved solution matrix X.

13: pdx — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array x.

Constraints:
if order = Nag_ColMajor, pdx > max(1,n);
if order = Nag_RowMajor, pdx > max(1, nrhs).

14: ferr[dim] — double Output
Note: the dimension, dim, of the array ferr must be at least max(1, nrhs).

On exit: ferr[j — 1] contains an estimated error bound for the jth solution vector, that is, the jth
column of X, for j=1,2,...

15: berr[dim]| — double Output
Note: the dimension, dim, of the array berr must be at least max(1, nrhs).

On exit: berr[j — 1] contains the component-wise backward error bound [for the jth solution
vector, that is, the jth column of X, for j =1,2,...,7.

16: fail — NagError * Output
The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = (value).
Constraint: n > 0.

On entry, kd = (value).
Constraint: kd > 0.

On entry, nrhs = (value).
Constraint: nrhs > 0.

On entry, pdab = (value).
Constraint: pdab > 0.

On entry, pdafb = (value).
Constraint: pdafb > 0.

[NP3645/7] f07hhe.3

f07hhc NAG C Library Manual

On entry, pdb = (value).
Constraint: pdb > 0.

On entry, pdx = (value).
Constraint: pdx > 0.
NE_INT 2

On entry, pdab = (value), kd = (value).
Constraint: pdab > kd + 1.

On entry, pdafb = (value), kd = (value).
Constraint: pdafb > kd + 1.

On entry, pdb = (value), n = (value).
Constraint: pdb > max(1,n).

On entry, pdb = (value), nrhs = (value).
Constraint: pdb > max(1, nrhs).

On entry, pdx = (value), n = (value).
Constraint: pdx > max(1,n).

On entry, pdx = (value), nrhs = (value).
Constraint: pdx > max(1, nrhs).

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The bounds returned in ferr are not rigorous, because they are estimated, not computed exactly; but in
practice they almost always overestimate the actual error.

8 Further Comments

For each right-hand side, computation of the backward error involves a minimum of 8nk floating-point
operations. Each step of iterative refinement involves an additional 12nk operations. This assumes
n > k. At most 5 steps of iterative refinement are performed, but usually only 1 or 2 steps are required.

Estimating the forward error involves solving a number of systems of linear equations of the form Az = b;
the number is usually 4 or 5 and never more than 11. Each solution involves approximately 4nk
operations.

The complex analogue of this function is nag_zpbrfs (f07hvc).
9 Example

To solve the system of equations AX = B using iterative refinement and to compute the forward and
backward error bounds, where

f07hhe.4 [NP3645/7]

f07 — Linear Equations (LAPACK)

549 268 0.00 0.00
268 5.63 —239 0.00
A=1000 239 260 22| 2d B=

0.00 0.00 -2.22 5.17

f07hhc

22.09 5.10

9.31 30.81
—5.24 2582
11.83 22.90

Here A is symmetric and positive-definite, and is treated as a band matrix, which must first be factorized
by nag_dpbtrf (f07hdc).

9.1 Program Text

/* nag_dpbrfs (f07hhc) Example Program.

*

* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.

*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagx04.h>

int main(void)

{

/* Scalars *x/

Integer i, j, k, kd, n, nrhs, pdab, pdafb, pdb, pdx;
Integer ferr_len, berr_len;

Integer exit_status=0;

Nag_UploType uplo_enum;

NagError fail;

Nag_OrderType order;

/* Arrays */
char uplo[2];
double *ab=0, *afb=0, *b=0, #*berr=0, xferr=0, *x=0;

#ifdef NAG_COLUMN_MAJOR

#define AB_UPPER(I,J)
#define AB_LOWER(I,J)
#define AFB_UPPER(I,J)
#define AFB_LOWER(I,J) a
#define B(I,J) bl (J-1)

[(J-1)*pdab + k + I - J - 1]
[(J-1)*pdab + I - JI
afb[(J-1)*pdafb + kK + I - J - 1]
fb[(J-1)*pdafb + I - J]

*pdb + I - 1]

ab
ab

#define X(I,J) x[(J-1)*pdx + I - 1]

order = Nag_ColMajor;

#else
#define AB_UPPER(I,J) ab[(I-1)*pdab + J - I]
#define AB_LOWER(I,J) ab[(I-1)*pdab + k + J - I - 1]

#define AFB_UPPER(I,
#define AFB_LOWER(I
#define B(I,J) b[(I

[(

[(
J) afb[(I-1)=*pdafb + J - Il
,J) afb[(I-1)*pdafb + k + T - I - 1]
-1)*pdb + J - 1]

#define X(I,J) x[(I-1)*pdx + JT - 1]

order = Nag_RowMajor;

#endif

INIT_FAIL(fail);
Vprintf ("f07hhc Example Program Results\n\n");

/* Skip heading in data file */

Vscanf ("s*x["\n] ");

Vscanf ("%$1d%1d%1d%s*["\n] ", &n, &kd, &nrhs);
pdab = kd + 1;

pdafb = kd + 1;

#ifdef NAG_COLUMN_MAJOR

pdb = n;

pdx = n;
#else
[NP3645/7]

f07hhe.5

f07hhc NAG C Library Manual

pdb nrhs;
pdx = nrhs;
#endif

ferr_len = nrhs;
berr_1len nrhs;

/* Allocate memory */

if (!(berr = NAG_ALLOC(berr_len, double)
ferr = NAG_ALLOC(ferr_len, double)
ab = NAG_ALLOC((kd+1) * n, double)
afb = NAG_ALLOC((kd+1) * n, double
b = NAG_ALLOC(n * nrhs, double)) |
X NAG_ALLOC(n * nrhs, double)))

e — — — —

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

3

/* Read A from data file =*/
Vscanf (" ' %ls ’'%*x[*\n] ", uplo);
if (*(unsigned char *)uplo == 'L’)
uplo_enum = Nag_Lower ;
else if (*(unsigned char #*)uplo == 'U’)
uplo_enum = Nag_Upper;
else
{
Vprintf ("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;
}
k = kd + 1;
if (uplo_enum == Nag_Upper)
{
for (1 = 1; 1 <= n; ++1)
{
for (j = i; j <= MIN(i+kd,n); ++3j)
Vscanf ("$1f", &AB_UPPER(i,j));
}
Vscanf ("sx[“\n] ");
3
else
{
for (1 = 1; 1 <= n; ++1)
{
for (j = MAX(1l,i-kd); j <= i; ++3)
Vscanf ("$1f", &AB_LOWER(i,j));
}
Vscanf ("sx["\n] ");
}
/* Read B from data file x/
for (i = 1; 1 <= n; ++1)
{
for (j = 1; j <= nrhs; ++3j)
Vscanf ("$1f", &B(i,3));
}
Vscanf ("sx["\n] ");
/* Copy A to AF and B to X */
if (uplo_enum == Nag_Upper)

{ for (i = 1; i <= n; ++1i)

{
for (j = i; j <= MIN(i+kd,n); ++3)
AFB_UPPER(i,j) = AB_UPPER(i,J);

}

b

else
{

for (1 = 1; 1 <= n; ++1)

07hhe.6 [NP3645/7]

f07 — Linear Equations (LAPACK)

for (] = MAX(1l,i-kd);] <= i; ++j)
AFB_LOWER(i,3j) = AB_LOWER(i,j);

b
}
for (i = 1; i <= n; ++1)
{
for (j = 1; j <= nrhs; ++3j)
X(llj) = B(llj);
}

/* Factorize A in the array AFP *x/
fO07hdc(order, uplo_enum, n, kd, afb, pdafb, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO7hdc.\n%s\n", fail.message);
exit_status = 1;
goto END;

¥
/* Compute solution in the array X */
fO07hec(order, uplo_enum, n, kd, nrhs, afb, pdafb, x, pdx, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf ("Error from fO7hec.\n%s\n", fail.message);
exit_status = 1;
goto END;

3

/* Improve solution, and compute backward errors and #*/

/* estimated bounds on the forward errors #*/

f07hhc(order, uplo_enum, n, kd, nrhs, ab, pdab, afb, pdafb,
b, pdb, x, pdx, ferr, berr, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO07hhc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Print details of solution */

x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs, x, pdx,
"Solution(s)", 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from xO4cac.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

Vprintf ("\nBackward errors (machine-dependent)\n");
for (j = 1; j <= nrhs; ++3j)
Vprintf ("s1l.le%s", berr[j-1]1, j%7==0 2"\n":" ");

Vprintf ("\nEstimated forward error bounds (machine-dependent)\n");

for (j = 1; j <= nrhs; ++j)
Vprintf ("$11l.1le%s", ferr[j-11, j%7==0 2"\n":" ");
Vprintf ("\n") ;
END:
if (berr) NAG_FREE (berr);
if (ferr) NAG_FREE(ferr);
if (ab) NAG_FREE (ab) ;
if (afb) NAG_FREE (afb) ;
if (b) NAG_FREE (b);
if (x) NAG_FREE(x);
return exit_status;

9.2 Program Data
f07hhc Example Program Data

4 1 2 :Values of N, KD and NRHS
'L’ :Value of UPLO
5.49

2.68 5.63
-2.39 2.60

[NP3645/7]

f07hhc

07hhe.7

f07hhc NAG C Library Manual

-2.22 5.17 :End of matrix A
22.09 5.10
9.31 30.81
-5.24 -25.82
11.83 22.90 :End of matrix B

9.3 Program Results

f07hhc Example Program Results

Solution(s)

1 2
1 5.0000 -2.0000
2 -2.0000 6.0000
3 -3.0000 -1.0000
4 1.0000 4.0000
Backward errors (machine-dependent)
6.4e-17 6.3e-17
Estimated forward error bounds (machine-dependent)
2.0e-14 2.9e-14

f07hhe.8 (last) [NP3645/7]

	f07hhc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	uplo
	n
	kd
	nrhs
	ab
	pdab
	afb
	pdafb
	b
	pdb
	x
	pdx
	ferr
	berr
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

